1、有理数是指可以表示为两个整数之比的数,包括正整数、负整数、0以及分数(正分数、负分数、零分数),例如:-3,0,1/2,3/4,等等。
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。无理数是指实数范围内不能表示成两个整数之比的数,简单的说,无理数就是10进制下的无限不循环小数。有理数和无理数的总称为实数。
无理数:不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。
1、无理数和有理数的概念是什么呢?感兴趣的小伙伴快来和我一起看看吧。下面是由我为大家整理的“无理数和有理数的概念是什么”,仅供参考,欢迎大家阅读。
2、有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。无理数,也称为无限不循环小数,不能写作两整数之比。
3、有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数的小数部分是有限或为无限循环的数。0也是有理数,整数和分数统称有理数,整数也可看做是分母为一的分数。比如4=0, 4/5=0.8,。
个有理数分别为:1,2,3,4,5;五个无理数分别为:√2,√3,√10,√7,√11。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
有理数和无理数分别指的是:有理数:有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数是指可以表示为两个整数之比的数,包括正整数、负整数、0以及分数(正分数、负分数、零分数),例如:-3,0,1/2,3/4,等等。
无理数和有理数区别在于性质、范围、结构的不同。
有理数是整数和分数的统称。无理数是所有不是有理数的实数。(3)范围区别:有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。
有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。无理数,也称为无限不循环小数。
有理数和无理数的区别是:两者概念不同。有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因此有理数的数集可分为正有理数、负有理数和零。
数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。
有理数是整数(正整数、负整数和零)和分数(正分数、负分数)的统称。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。0是*值最小的有理数。
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。无理数是指实数范围内不能表示成两个整数之比的数,简单的说,无理数就是10进制下的无限不循环小数。有理数和无理数的总称为实数。
有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。
有理数和无理数的定义分别为:无限不循环小数和开根开不尽的数叫无理数,整数和分数统称为有理数。包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。